If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2-16y+4=0
a = 7; b = -16; c = +4;
Δ = b2-4ac
Δ = -162-4·7·4
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-12}{2*7}=\frac{4}{14} =2/7 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+12}{2*7}=\frac{28}{14} =2 $
| 8x2+6x+4=0. | | 4u=9u | | 3(×+2)(x-2)=(3x-2)(x+4) | | 2(x-5)=3x+10 | | 7x+89=32*8x | | -3y+12=30+6+5y | | z=40+0.2/0.65 | | 2(-4x+2)=16-4x | | 0.60(2-300)+0.05z=0.70z-205 | | 54=x-5 | | 0.22222222x-0.333=1 | | x+2=10x+14 | | 54=x—5 | | -3c+12-5c=36 | | (0.5+2)+2=9x | | Y=5/12x-2 | | 2×-3y=-21 | | 6^2n-3=7776 | | −5x=-4 | | −5x=−4 | | 4x(2)=2x+10(2) | | 5.3+2-4.1=3.6x-1.6 | | 6y−4=2y+20 | | 6-4x=5x-30 | | 9-x+5=-9 | | 61-18x=0 | | 9x-3=4x=6 | | 5x+-2=6 | | 10-6x=8-12x | | X=10x+14-2 | | 12+2x=4x+10 | | 5g=-95 |